G Giovani, Amir Mukhlis


This study focuses on the problem of critical compressive axial load. can be resist by the structure. The method used in this analysis is the finite element method. The basic concept of this method is that a continuous structure can be discretionally modeled into a simpler discrete structure, a discrete structure formed from a combination of elements whose behavior is expected to represent the behavior of a more complex structure. By using the finite element method can complete the analysis more simply. The final result of this study is to determine the value of the collapse load value of a structure, the displacement pattern that occurs, and the internal forces that occur with the finite element method approach. In the analysis of linear instability and in the analysis of non-linear instability for both prismatic and non-prismatic beams, there will be some differences in terms of working methods, critical load values, and values of displacement and internal forces.


Matrix; Finite Element,; Axial Load; Beam

Full Text:



Mukhlis, A., 2016, “Perbandingan Perencanaan Portal Baja dengan SAP2000 dan ETABS”, Jurnal Teknik Sipil Fakultas Teknik Universitas Teuku Umar, Volume 2, Nomor 2, Tahun 2016.

Katili, I., 2000, Aplikasi Metode Elemen Hingga Pada Balok, Rangka, Grid, dan Portal, Jakarta, Fakultas Teknik Universitas Indonesia.

Guire, W.M., dan Gallagher, R., 1979, Matrix Struktural Analysis, New York, Wiley.

Popov, E.P., 1995, Mechanics of Materials, Jakarta, Erlangga.

Singer, P.L. dan Pytel, A., 1985, Strength of material, Jakarta, Erlangga.

Weaver, W. dan Johnston, P.R., 1993, Elemen Hingga Untuk Analisis Struktur, Bandung, Eresco.



  • There are currently no refbacks.

Published by: Geuthèë Institute


Jalan Limpok - Cot Iri, Barona Jaya, Aceh - Indonesia

E-mail: &


Jurnal Geuthèë : Penelitian Multidisiplin


ISSN Online: 2614 – 6096 .

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.